The Crystal Structure of Dimethyltin Diisothiocyanate

By YEH MEI CHOW

Received June 4, 1969

Dimethyltin diisothiocyanate forms orthorhombic crystals in the space group Pmmn with $a = 9.82 \pm 0.02$ Å, $b = 7.87 \pm 0.02$ 0.01 Å, and $c = 5.57 \pm 0.01$ Å. The structure was determined from 147 photographically collected intensities and was refined by the least-squares method to an R factor of 4.6%. The structure is polymeric and consists of infinite chains of weakly linked $Sn(CH_3)_2(NCS)_2$ molecules. The individual molecule may be considered as a strongly distorted tetrahedron with CH_3 -Sn-CH₃ and N-Sn-N angles to be 145.9 \pm 1.4 and 84.1 \pm 1.6°, respectively. It has mm2 symmetry with the distances $\text{Sn-C}(\text{CH}_3) = 2.14 \pm 0.03$ Å, $\text{Sn-N} = 2.10 \pm 0.02$ Å, $\text{N-C} = 1.15 \pm 0.05$ Å, and $\text{C-S} = 1.60 \pm 0.04$ Å. The N-C-S angle is $179.3 \pm 2.8^{\circ}$ indicating the linearity of the NCS group. The distance between the two sulfur atoms in one molecule and the tin atom in the adjacent molecule, 3.21 ± 0.01 Å, is smaller than the sum of van der Waals radii. This suggests the presence of intermolecular donor-acceptor bonding leading to the formation of infinite chains.

Introduction

The crystal structure reported here was a part of a general investigation of intermolecular interactions of pseudohalogens and heavy atoms in the solid states. Recent review articles¹⁻³ have discussed intermolecular donor-acceptor bonding from the lone pairs of pseudohalogens to the unfilled orbitals of heavy atoms. The investigation of dimethyltin diisothiocyanate was motivated by the recent determination of the crystal structure of trimethyltin isothiocyanate.⁴ The structure of trimethyltin isothiocyanate is polymeric, consisting of infinite zigzag chains. The discrete molecules are linked by donor-acceptor bonding between sulfur and the tin atom of the adjacent molecule, thus leading to a coordination number for tin of 5. Since in dimethyltin diisothiocyanate there are two isothiocyanate groups, the question occurs of whether the two sulfur atoms both will form intermolecular donor-acceptor bonds with tin atoms of adjacent molecules leading to a hexacoordinated tin or whether only one sulfur atom will bond to a neighboring tin atom, leading to pentacoordinated tin as in trimethyltin isothiocyanate.

Experimental Section

Dimethyltin diisothiocyanate was prepared by mixing dimethyltin dichloride and potassium thiocyanate in ethanol. Recrystallization from benzene containing a small amount of methanol gave needlelike crystals. The melting point of the crystals was 184–188°, which was lower than the reported⁵ value of 194-196°. The infrared spectrum in a halocarbon mull showed two strong N-C stretching bands at 2088 and 2062 cm⁻¹, in agreement with the reported data.6

Space Group and Unit Cell

Oscillation, Weissenberg, and precession photographs were taken with Mo K α radiation (λ 0.7107 Å) of a crystal mounted for rotation about the needle axis

(6) R. Okawara, ibid., 8, 261 (1967).

(c axis). The crystal is orthorhombic with $a = 9.82 \pm$ $0.02 \text{ Å}, b = 7.87 \pm 0.01 \text{ Å}, \text{ and } c = 5.57 \pm 0.01 \text{ Å}; \text{ the}$ errors are estimated to be 1 part in 600, characteristic accuracy with the precession camera. The molecular volume is 215 Å^3 and the calculated density is 2.05 g/cm^3 for two molecules per unit cell. Systematic extinctions h + k odd in hk0 indicated P2₁mn or Pmmn to be the space group. The latter would require a molecular structure similar to dimethyltin dicyanide⁷ with mm2 symmetry. The spoon test for pyroelectricity described by Bunn gave negative results so that the space group could not be identified on this basis.

A crystal elongated along c with a length of 0.5 mm, and with approximate widths 0.06 mm for (010), 0.03mm for (100) faces, was mounted in a glass capillary for intensity measurements.⁸ Precession intensity data were collected for layers 0kl to 2kl, h0l to h2l, kkl to (k + 3)kl using unfiltered Mo K α radiation. All the relative intensities were estimated by visual comparison to an intensity strip. There were 147 independent reflections of observable intensity. Lorentz and polarization corrections were made. The linear absorption coefficient for the Mo K α radiation was 33.7 cm⁻¹. The maximum effect on the intensities that the neglect of absorption causes is about 10%. No absorption correction was made.

Determination of the Structure

The approximate tin and sulfur positions were revealed from a three-dimensional Patterson map. A three-dimensional Fourier map obtained in the Pmmn space group with tin and sulfur determining the phases showed the positions of the light atoms with peak heights proportional to their atomic numbers. Resulting structure factor calculations, using isotropic temperature factors of 2.0, gave $R (\Sigma ||F_{\circ}| - |F_{\circ}||)$ $\Sigma |F_0| = 0.23$. Fourier maps with P2₁mn as the space

⁽¹⁾ D. Britton, Perspec. Struct. Chem., 1, 109 (1967).

⁽²⁾ J. S. Thayer and R. West, Advan. Organometal. Chem., 15, 169 (1967). (3) M. F. Lappert and H. Pyszora, Advan. Inorg. Chem. Radiochem., 9, 133 (1966).

⁽⁴⁾ J. B. Hall, Inorg. Chem., in press.
(5) M. Wada, M. Nishino, and R. Okawara, J. Organometal. Chem. (Amsterdam), 3, 70 (1965).

⁽⁷⁾ J. Konnert and D. Britton, unpublished work.

⁽⁸⁾ The crystal discolored on a few weeks standing in the air. It was felt this decomposition might be accelerated in the heat of the X-ray beam, so it was sealed in a glass capillary. It is possible that this precaution is unnecessary.

group were also calculated, but the maps confirmed that Pmmn was the space group. 9

A full-matrix least-squares refinement was carried out with the position parameters and isotropic temperature parameters of all atoms, minimizing the function $\Sigma w(|F_o|^2 - |F_c|^2)^2 / \Sigma w |F_o|^4$. The weighting scheme was w = 1.0 for $F_0 < 32.6$ and $w = (32.6/F_0)^4$ for $F_{o} > 32.6$. After five cycles of refinement the values of $r [\Sigma w (|F_{o}|^{2} - |F_{o}|^{2})^{2} / \Sigma w |F_{o}|^{4}]$ and R were 0.0403 and 0.079, respectively. A difference Fourier map showed anisotropic vibration of tin and sulfur atoms. The refinement with anisotropic thermal parameters was then continued. The successive r and R values were the following: all atoms isotropic, 0.0403 and 0.079; only Sn ansiotropic, 0.0156 and 0.047; only Sn and S anisotropic, 0.0136 and 0.046; all atoms anisotropic, 0.0129 and 0.045. A comparison of these r values according to the method of Hamilton¹⁰ indicated the refinement should have been terminated with only tin and sulfur anisotropic. The parameters from this cycle are therefore chosen as the final set, and are given in Table I. The corresponding principal axes of

	Ta	BLE	I	
POSITIONAL	PARAMETERS	AND	THERMAL	PARAMETERS

		Positiona	l Parameter	s	
		$X (10^4 \sigma)$	$Y (10^4 \sigma)$	Z	$(10^4\sigma)$
Sn	1	/4	1/4	0.0	438 (5)
s	(). 5325 (10)	1/4	0.3	341 (14)
N	(0.3930 (29)	1/4	0.7	638 (45)
C(NCS	3) (). 4521 (32)	1/4	0.5	848 (58)
C(CH ₈)) 1	14	0.5102 (40) 0.1	567 (47)
		Thermal	Parameters	3	
	β (σ)	β11 (104σ)	$\beta_{22} \ (10^4 \sigma)$	β38 (104σ)	β18 (10 ⁴ σ)
Sn		0.0121(5)	0.0121(5)	0.0172 (10)	
s		0.0135 (15)	0.0236 (22)	0.0269 (36)	0.0046 (17)
N C(NCS) C(CH3)	4.88 (0.5 4.41 (0.7 4.75 (0.7	7) 0) 0)			

the ellipsoids of vibration of tin and sulfur are given in Table II. The observed and calculated structure factors are given in Table III. The estimated standard deviations quoted from the parameters should be used with caution. The low R value may be in part fortuitous, owning to the smaller number of reflections. In addition, the neglect of the absorption corrections must surely affect the anisotropic thermal parameters significantly.

Discussion

The crystal stucture is shown in Figure 1. The individual molecule may be considered as a distorted tetrahedron similar to that in dimethyltin dicyanide.⁷ The Sn-C(CH₈) distance of 2.14 ± 0.03 is normal as compared with those in other methyl tin compounds (Table IV). The Sn-N distance, 2.10 ± 0.02 Å, is

TABLE II PARAMETERS FOR THE ELLIPSOIDS OF VIBRATION

Roo ampl	t-mean square itude, Å (10³σ)	Angle with a axis (σ)	Angle with b axis (σ)	Angle with c axis (σ)
Sn	0.164(5)	90.0	90.0	0.0
	0.195(4)	90.0	180.0	90.0
	0.244(5)	0.0	90.0	90.0
s	0.191 (16)	113.6(7.8)	90.0	23.7(7.8)
	0.267(12)	156.3(7.8)	90.0	113,7(7.8)
	0.272(12)	90.0	0.0	90.0

TABLE III

Observed and Calculated Structure Factors $(\times 10)$

ĸĻ	FO	FC	ĸι	۴ò	FC	κL	FO	۴c	κL	۴o	FC	κL	FO	FC	ĸL	۴O	FC
H=0			03	495	-490	70	312	332	0 2	201	203	0 3	415	429	32	427	429
01	552	561	0 4	383	-384	7 1	297	300	03	407	399	1 1	475	-450	42	337	-352
02	290	297	05	380	- 338	He2			0 4	373	385	1 2	196	-167	5 0	261	-239
03	606	621	0.6	267	-249	0 0	421	-368	05	199	248	1 3	271	-247	51	321	-322
3 3	364	-369	10	948	~1018	0 1	1171	-1225	1 0	517	706	3 6	413	-428	52	323	-313
1.3	460	-465	1.1	761	~848	0.2	744	-720	1 1	608	634	2 0	636	-633	H=9		
1.4	663	-662	1 2	576	-586	0 4	297	-274	12	530	527	2 1	396	-378	0 0	495	-500
2 0	1669	-1559	1 3	323	-338	12	560	564	1 3	508	508	2 2	464	-453	0 1	460	-466
51	343	-350	1 4	275	-266	13	465	454	5 1	413	-420	23	473	-479	S 0	323	-329
22	373	-378	22	334	338	1.5	438	460	23	348	-349	3 1	335	355	12	274	243
23	674	~688	2 3	424	421	21	876	901	24	381	-406	34	353	358	13	290	277
3 t	360	305	2 4	386	414	22	747	716	3 0	600	-611	4 0	628	599	2 0	345	346
з г	220	146	25	344	362	23	510	202	3 1	544	-534	4 1	381	371	21	378	370
33	418	391	26	253	245	2 4	313	304	32	437	-429	4 2	321	316	5 2	335	337
34	598	545	30	755	797	3 2	486	-463	33	437	-406	4 3	309	302	40	335	-351
4 0	1242	1165	31	697	685	33	410	-384	41	403	383	6 0	320	-332	4 1	312	-331
9 1	456	419	32	479	460	35	381	-367	4 3	274	291	H+5			H=7		
42	290	273	33	288	279	4 0	373	-328	4 4	269	285	02	53ć	~535	01	266	236
4 3	440	423	34	286	218	4 1	740	-718	50	405	414	03	244	-229	с э	277	264
53	305	-278	4 2	392	-371	42	483	-484	51	321	369	04	207	-193	1.0	524	524
6 0	638	~593	4 3	332	-342	52	297	293	52	286	316	1 0	384	-361	1 1	301	279
61	256	-258	44	313	~289	53	313	277	53	304	302	1 1	596	-540	1 3	307	290
62	240	~236	5 0	490	-500	61	384	414	∺=4			12	532	-524	5 0	307	362
H=1			51	467	-459	62	340	341	0.0	986	928	5 5	415	382	H#8		
0 1	203	-138	5 Z	340	-359	H=3			01	e92	513	3 0	321	333	00	293	301
02	609	-605	53	286	-228	0.1	745	718	02	452	441	3 1	451	461	0 1	286	312

Figure 1.—The crystal structure of $(CH_a)_2Sn(NCS)_2$: top view, along *c* axis; bottom left view, along *a* axis; bottom right view, along *b* axis.

equal to the sum of the single bond covalent radii. The CH₃-Sn-CH₃ angle and the N-Sn-N angle are similar to the corresponding angles in dimethyltin dicyanide. The N-C-S angle is 179.3 \pm 2.8°, indicating linearity of the NCS group. If we compare the distances N-C, C-S and the angle Sn-N-C with those in other isothiocyanates¹¹⁻¹³ nothing unusual is found in our (CH₃)₂Sn(NCS)₂ results. Bonding in organometallic isothiocyanates generally is not well understood.

(11) A. Ferrari and A. Braibanti, ibid., 18, 367 (1965).

(13) J. R. Knox and K. Eriks, Inorg. Chem., 7, 84 (1968).

⁽⁹⁾ An all-*trans* structure (around roughly octahedral tin) in space group P21mn fit the Patterson map as well. This structure gave a more regular octahedral environment around tin, and gave as reasonable packing as the present reported structure. However, a three-dimensional Fourier map with the phases determined by all of the atoms in the P21mn arrangement was unambiguously inferior to that determined similarly for the Pmmn arrangement.

⁽¹⁰⁾ W. C. Hamilton, Acta Crystallogr., 18, 502 (1965).

⁽¹²⁾ A. C. Hazell, J. Chem. Soc., 5745 (1963).

(($CH_{3}_{2}Sn(NCS)_{2}$ and Related	COMPOUNDS	
Dist	Compd	Value, Å	Ref
Sn-C(CH ₃)	$(CH_3)_2Sn(CN)_2$	2.11 ± 0.05	7
	(CH ₃) ₈ SnNCS	2.16 ± 0.05	4
		2.12 ± 0.04	4
	$(CH_3)_2Sn(NCS)_2$	2.14 ± 0.03	This work
Sn-N	(CH ₃) ₃ SnNCS	2.13 ± 0.04	4
	$(CH_3)_2Sn(NCS)_2$	2.10 ± 0.02	This work
N-C	Some other isothiocyanates and	1.07-1.34	11-13
	bridged thiocyanates		
	(CH ₈) ₈ SnNCS	1.22 ± 0.07	4
	$(CH_3)_2Sn(NCS)_2$	1.15 ± 0.05	This work
C-S	Some other isothiocyanates and	1.55-1.80	11-13
	bridged thiocyanates		
	(CH ₃) ₃ SnNCS	1.56 ± 0.05	4
	$(CH_3)_2Sn(NCS)_2$	1.60 ± 0.04	This work
$Sn \cdots S$	(CH3)3SnNCS	3.17 ± 0.01	4
	$(CH_3)_2Sn(NCS)_2$	3.21 ± 0.01	This work
	Sum of van der Waals radii ^a	4.05	14
Angle	Compd	Value, deg	Ref
H ₃ C-Sn-CH ₃	$(CH_3)_2Sn(CN)_2$	148.7 ± 3.5	7
	$(CH_3)_2Sn(NCS)_2$	145.9 ± 1.4	This work
NC-Sn-CN	$(CH_3)_2Sn(CN)_2$	85.3 ± 3.7	7
N-Sn-N	$(CH_3)_2Sn(NCS)_2$	84.1 ± 1.6	This work
Sn-N-C	(CH ₃) ₃ SnNCS	176.3 ± 4.1	4
	$(CH_3)_2Sn(NCS)_2$	168.2 ± 2.6	This work
M-N-C	Some other isothiocyanates and	111-180	11-13
	bridged thiocyanates		
N-C-S	(CH3)SnNCS	177.8 ± 4.8	4
	$(CH_3)_2Sn(NCS)_2$	179.3 ± 2.8	This work
Sn-S-C	(CH ₃) ₃ SnNCS	94.6 ± 1.8	4
	$(CH_3)_2Sn(NCS)_2$	90.7 ± 1.1	This work
Ag-S-C	AgSCN	103.8	ь
	$AgSCNP(n-C_{3}H_{7})_{3}$	98, 103	c
Cd-S-C	$Cd(etu)i(SCN)_2$	109.1 ± 4.4	d
Pt-S-C	$\alpha - Pt_2(SCN)_2Cl_2(P(n-C_3H_7)_3)_2$	100.7 ± 9.7	е
Ni-S-C	Ni(en)2NCSI	100	f
C11-8-C			
Cu-b-C	$Cu_2(NCS)_2(NH_3)_3$	82.6,88.7, 96.3	g
I-S-S	Cu2(NCS)2(NH3)3 CHI3-3S8	82.6,88.7, 96.3 104.4	g h
I-S-S	Cu ₂ (NCS) ₂ (NH ₈) ₈ CHI ₈ ·3S ₈ SbI ₈ ·3S ₈	$82.6, 88.7,96.3104.498.79 \pm 0.17$	g h i

^a van der Waals radius of Sn was estimated. ^b I. Lindquist, Acta Crystallogr., **10**, 29 (1957). ^e A. Turco, C. Panattoni, and E. Frasson, Nature, **187**, 772 (1960). ^d L. Cavalca, M. Nardell, and G. Fava, Acta Crystallogr., **13**, 125 (1960). ^e P. G. Owston and J. M. Rowe, *ibid.*, **13**, 253 (1960). ^f A. E. Svelasvili, "Abstracts of Papers Presented Before the 7th Congress of the International Union of Crystallography," Moscow, July 1966, No. 9-61. ^g J. Garaj, Inorg. Chem., **8**, 304 (1969). ^h T. Bjorvatten, Acta Chem. Scand., **16**, 749 (1962). ⁱ T. Bjorvatten, O. Hassel, and A. Lindheim, *ibid.*, **17**, 689 (1963). ^j O. Holmestand and C. Romming, *ibid.*, **20**, 2601 (1966). Resonance among the following valence bond structures has been discussed²

$$\ddot{N} \rightarrow C \equiv \dot{S}: \longleftrightarrow N \equiv C = \dot{S}: \longleftrightarrow - \ddot{N} \equiv C - \ddot{S}: \longleftrightarrow$$

 \vec{M}
 $\ddot{N} \rightarrow C \equiv \dot{S}: \longleftrightarrow \vec{M} = \ddot{N} = C = \dot{S}$

A comparison of our data with Pauling's values¹⁴ (S—C = 1.81 Å, S=C = 1.61 Å, N=C = 1.29 Å, and N=C = 1.15 Å) gives no strong suggestion of the dominant resonance form in this structure.

The 3.21 \pm 0.01 Å Sn · · · S distance, similar to that in trimethyltin isothiocyanate, is considerably shorter than the sum of van der Waals radii and suggests the presence of intermolecular donor-acceptor bonding. These interactions lead to the formation of infinite chains along the c axis. With consideration of the weak donor-acceptor bonding the tin is hexacoordinated. No distance between the atoms of nearest chains is shorter than the sum of the van der Waals radii. The Sn-S-C angle is $90.7 \pm 1.1^{\circ}$; this seems to be smaller than similar angles in some other bridged compounds and addition compounds but it is not the only case and it is also not unusual for other sulfur compounds. In (CH₃)₃SnNCS and (CH₃)₂Sn(NCS)₂ the Sn–N–C angles are nearer to 180° than 120°. The Si-N-C angle in gaseous $(CH_3)_3$ SiNCS, $154 \pm 2^\circ$, shows a substantial deviation from linearity.¹⁵ It will be interesting to know whether the Ge-N-C angles in (CH₃)₃GeNCS and (CH₃)₂Ge(NCS)₂ are similar to those in the corresponding tin compounds or the gaseous silicon compound.

Acknowledgment.—I am grateful to Professor Doyle Britton for his helpful advice, to the University of Minnesota Computer Center for a grant of computer time, and to the NSF for its support of this work.

(14) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, pp 260, 224, 228, 274.

(15) K. Kimura, K. Katada, and S. H. Bauer, J. Amer. Chem. Soc., 89, 416 (1966).

TABLE IV					
INTERATOMIC	DISTANCES AND	ANGLES	FOR		